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ARTICLE ADDENDUM

SlPRA1A/RAB attenuate EIX immune responses via degradation of LeEIX2 pattern
recognition receptor
L. Pizarroa, M. Leibman-Markusa, S. Schustera, M. Bar b, and A. Avni a

aSchool of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel; bDepartment of Plant Pathology and Weed Research, ARO, The
Volcani Center, Rishon LeZion, Israel

ABSTRACT
Pattern recognition receptors (PRR) are plasma membrane (PM) proteins that recognize microbe-associated
molecular patterns (MAMPs), triggering an immune response. PRR are classified as receptor like kinases
(RLKs) or receptor like proteins (RLPs). The PM localization of PRRs, which is crucial for their availability to
sense MAMPs, depends on their appropriate trafficking through the endomembrane system. Recently, we
have identified SlPRA1A, a prenylated RAB acceptor type-1 (PRA1) from S. lycopersicum, as a regulator of RLP-
PRR localization and protein levels. SlPRA1A overexpression strongly decreases RLP-PRR protein levels,
particularly those of LeEIX2, redirecting it to the vacuole for degradation. Interestingly, SlPRA1A does not
affect RLK-PRRs, indicating its activity to be specific to RLP-PRR systems. As PRA1 proteins stabilize RABs on
membranes, promoting RABs activity, we aimed to identify a RAB target of SlPRA1A. Screening of a set of A.
thaliana RABs revealed that AtRABA1e is able to mimic SlPRA1A activity. Through live cell imaging, we
observed that SlPRA1A enhances AtRABA1e localization on SlPRA1A positive punctuated structures. These
results indicate that AtRABA1e is a putative target of SlPRA1, and a co-regulator of LeEIX2 trafficking and
degradation.
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Recognition of microbe-associated molecular patterns
(MAMPs) depends on plasma membrane (PM) receptors
termed pattern recognition receptors (PRRs), which lead to
activation of signal transduction upon microbe perception/
recognition.1,2 PRRs traffic from the endoplasmic reticulum,
where they are synthesized, through different endomembrane
compartments to the PM, were they function to bind
MAMPs. Therefore, PRR localization at the PM is pivotal to
enable a proper and efficient immune response.3 PRRs are
classified in two groups; receptor like kinases (RLKs) and
receptor like proteins (RLPs), according to the presence or
absence of a kinase domain, respectively.4

Recently, we have identified SlPRA1A, a prenylated RAB
acceptor type-1 (PRA1A) protein from Solanum,3 as a compo-
nent of the trafficking machinery involved in PRR-trafficking
and immunity 5). SlPRA1A regulates trafficking of RLP-PRRs
and LeEIX2 in particular, but not of RLK-PRRs such as FLS2,
demonstrating SlPRA1A specificity for PRR regulation.5 LeEIX2
is a S. lycopersicum RLP-PRR that recognizes the fungal MAMP
– EIX, triggering immune responses characterized by oxidative
burst, induction of ethylene production and hypersensitive
response.6–9We have demonstrated that LeEIX2 PM localization
and protein level are highly diminished upon SlPRA1A over-
expression, due to redirection of LeEIX2 to the vacuole where it
is degraded.5 Consequentlly, LeEIX2 depletion mediated by
SlPRA1A, strongly decreases LeEIX2s sensing capabilities,
impairing the plant immune response to this MAMP.

RABs are small GTPases which play an important role in
endomembrane trafficking, being implicated in vesicle fusion

at the target compartment, where they are accumulate.10

Endomembrane trafficking of proteins is highly dynamic and
highly dependent on RAB function.10,11 Overexpression or loss
of function of these proteins can generate significant changes in
protein trafficking, cell functioning and plant physiology.11

Several reports show the significant role that RABs play in
plant immunity; in secretion of defense components and in
hypersensitive response execution.12–15 Indeed, RABs can be
target for inhibition by bacterial effectors, secreted by patho-
gens 16 or targeted for hijacking during viral infection.17 PRA1
proteins regulate RABs by stabilizing their location at cell
membranes.18 Promoting RAB activity and consequently the
trafficking mediated by them.19 In this context, it will beintri-
guing to identify the putative RAB target regulated by SlPRA1A
and establish its regulatory role in LeEIX2 trafficking and
degradation.

We have performed a screen, overexpressing a set of RAB
proteins from Arabidopsis thaliana, searching for RABs which
can mimic the effect of SlPRA1A overexpression on EIX defense
responses.5 Oxidative burst after EIX exposure was measured to
test RABs effect on LeEIX2 mediated defense responses,
(Figure 1). Among analyzed AtRABs, AtRABA1e, an early endo-
somal/Trans-Golgi Network (EE/TGN) RAB,20 showed a dimin-
ished response to EIX treatment, resembling the effect of
SlPRA1A (Figure 1A). Interestingly, another EE/TGN RAB,
RABD2b that highly colocalized with SlPRA1A,5 did not affect
the oxidative burst triggered by EIX (Figure 1A). Additionally,
AtARA6 and AtARA7, two extensively studied late endosomal
RABs,21,22 did not significantly affect EIX induced defense
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responses (Figure 1A). Previous studies using the PRR FLS2
showed that FLS2 is localized in AtARA7 and AtARA6 compart-
ments after elicitation, and that ARA7 function is needed for
FLS2 endocytic trafficking.12,23 In our experiments we observed
a slight (not significant) increase in the oxidative burst when
AtARA6 and AtARA7 are overexpressed (Figure 1A). Further
experiments should be undertaken to explore the role of these
two RABs in EIX induced defense responses.

The oxidative burst results suggest that AtRABA1e, may be a
specific candidate for SlPRA1A regulation. AtRABA1e is
involved in cell plate formation.24 However, its role in immune
defense has not been described so far. Using live cell imaging,
we observed high colocalization between SlPRA1A and
AtRABA1e, providing a subcellular platform where they could
interact (Figure 1B). Interestingly, while AtRABA1e is mainly
localized in the cytoplasm in control conditions, we observed
that co-expression with SlPRA1A strongly increased AtRABA1e
localization in punctuated structures that SlPRA1A positive
structures (Figure 1B). The shift in AtRABA1e localization,
supports a possible role of SlPRA1A in stabilization of
AtRABA1e at the membrane, promoting its activity. Taken
together the role of SlPRA1A in driving LeEIX2 to vacuolar
degradation 5 the effect of AtRABA1e on EIX induced oxidative
burst (Figure 1A) and the effect of SlPRA1A on AtRABA1e
localization (Figure 1B) lead us to hypothesize that AtRABA1e

is a target of SlPRA1A regulation, and together they regulate
LeEIX2 trafficking and degradation.

Here we identified a putative target of SlPRA1A regulation
using A. thaliana RABs. We now intent to isolate the S.
lycopersicum ortholog of AtRABA1e and determine its role
as a SlPRA1A target in an endogenous system. We seek to
continue deciphering the trafficking machinery regulating
LeEIX2 at the protein and sub-cellular levels and investigate
its linkage with EIX immune responses.
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Figure 1. Effect of RABs on EIX induced oxidative burst. A) ROS oxidative burst was measured in N. tabacum transiently expressing free mCherry (control), SlPRA1A-
mCherry, AtRABA1e-mCherry, AtRABD2b-mCherry, ARA6-GFP or ARA7-GFP using a luminol luminescence-based system. ROS production is normalized to the peak
value of the control. Asterisks represent statistical significance (* p-value ≤ 0.05, ** p-value ≤ 0.01, *** p-value ≤ 0.001) in two-way ANOVA and Bonferroni post-tests.
Data are represented as mean ± SEM. B) Confocal microscopy images of N. benthamiana epidermal cells transiently expressing SlPRA1A-GFP or free-eGFP as control
(green) and AtRABA1e-mCherry (magenta). Representative images are shown. Scale bar 5 µm. White arrowheads point to SlPRA1A compartments co-localizing with
AtRABA1e. Pearson correlation coefficient of the co-localization between SlPRA1A and the markers (N = 15). Data presented as mean ± SEM.
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