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NRC proteins - a critical node for pattern and effector mediated signaling
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ABSTRACT
Plants are constantly exposed to numerous diverse microbes and pests. They lack an adaptive immune
system and rely on innate immunity to perceive and ward off potential pathogens. The plant immune
system enables plants to overcome invading microorganisms, and can be defined as highly successful in
this regard. Nevertheless, specialized pathogens are able to overcome structural barriers, preformed
defenses, innate immunity and are a persistent threat to crop and food supplies worldwide. The rapidly
growing world population results in massive demands for agricultural products and reliable crop yields.
Therefore, the ability to precisely manipulate plant immunity to resist diverse diseases holds significant
promise for enhancing crop production.
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Plant immunity is conventionally depicted as a two-tiered
system. The first line of plant defense is formed by pattern
recognition receptors (PRRs), located at the cell surface, that
recognize microbe-associated molecular patterns (MAMPs)
and trigger pattern-triggered immunity (PTI).1 Successful
pathogens are able to overcome plant PTI using secreted
effectors that suppress PTI, leading to plant susceptibility.
Concomitantly, plants evolved the second line of defense
based on cytoplasmic immune receptors that recognize effec-
tors (Avrs) and deploy effector-triggered immunity (ETI).2,3

However, accumulating evidence from the last decade blurs
the distinction between the two systems and reveals signifi-
cant overlap and diversity in immune signaling networks.4–6

Blurred distinction

MAMPs are traditionally defined as highly conserved moieties
within a class of microbes, essential for microbial fitness,7,8

while effectors are considered to be species, race or strain
specific and confer virulence.9,10 However, several MAMPs
and effectors refuse to follow these rules, creating exceptions
to this man-made distinction. For instance, the necrosis-
induced peptide 1 (NEP1) and NEP1-like proteins are effec-
tors required for virulence, but they are conserved among
bacteria, fungi and oomycetes.4,5 Other examples of wide-
spread effectors required for pathogen virulence are extracel-
lular protein 6 (Ecp6) and Ecp6 conserved orthologs – LysM
effectors, harpin effectors and crinkler effectors that are
widely conserved in fungi, Gram-negative bacteria and oomy-
cetes, respectively.4,5 On the other hand, we find examples of
MAMPs with a very narrow known distribution such as Ax21
and Pep-13 that are present in only a few Xanthomonas
strains and Phytophthora species, respectively.4,5

Additionally, MAMPs such as flagellin, lipopolysaccharide,

peptidoglycan, chitin, EIX and PWL (pathogenicity toward
weeping lovegrass) contribute to pathogen virulence.4,5

The distinction between the outcomes of PTI and ETI can
also be confusing. ETI is frequently noted as leading to a more
rapid, sustainable and stronger immune response, culminat-
ing in cell death known as the hypersensitive response
(HR).2,11 Nonetheless, we know of several MAMPs that are
able to induce HR, among them flagellin, CBEL and EIX.12–15

Meanwhile, we can find weak ETI responses like the ones
mediated by RPS4 and Ve1, which recognize Pseudomonas
and Verticillium effectors, respectively.16,17

PTI is mediated by cell surface PRRs that can be classified,
based on their domains, into different categories. The largest
category is that of extracellular leucine-rich repeat (eLRR)
containing receptors, and can be further divided into receptor
like proteins and kinases (eLRR-RLP/K).18 ETI is frequently
mediated by cytoplasmic receptors, which are primarily
nucleotide binding leucine rich repeat (NLR) proteins.19

However, there are several examples of eLRR-RLP type cell
surface receptors that can recognize effectors and mediate
ETI, such as Cf2, Cf4, Hcr9-4E, Cf5, Cf9, Ve1, l and LepR3/
RLM2,20–27 and even an eLRR-RLK – I-3.28 Given the gradi-
ent of responses that can be induced by either MAMP or
effector recognition, it is now becoming clear that the
responses governed by diverse plant immune receptors are
integrated in diverse manners.6

Convergent immune signaling

Despite the diversity of pathogen components recognized and
strength of immune responses, there are commonalities in
defense signaling outputs, indicating that recognition of both
MAMPs and effectors utilize similar signaling networks. PTI
induces rapid activation of MAPK cascades which leads
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to the activation of downstream signaling pathways.29

Unsurprisingly, several effectors target MAPK cascade com-
ponents in order to disrupt PTI.30–34 More interestingly, there
are cases of ETI leading to activation of the same PTI-MAPK
cascades.35 In addition, PTI/ETI share other signaling path-
ways including ROS signaling, Ca2+ signaling, hormone sig-
naling and substantial overlapping transcriptional regulation,
resulting in plant immune responses- as recently reviewed by
Peng et al.36 These evidences demonstrate a certain level of
convergence in PTI/ETI signaling.

Helper NRCs as signaling convertors

In the classical gene-for-gene model proposed by Harold Flor
in 1942, an R gene typically encodes an NLR receptor that
detects and responds to an effector (Avr) gene product.37,38

More recently, a diversity of recognition mechanisms have
been revealed.3 One additional model demonstrates that NLRs
can function in pairs, with one NLR functioning as a sensor-
for effector detection (s-NLR), and the other as a helper-
initiating immune signaling (h-NLR),39,40 (Figure 1,. One
specific NLR family in Solanaceae, termed NLR required for
cell death (NRC), emerges as a key family of h-NLR required
signaling downstream of multiple s-NLRs.41 Recent publica-
tions indicates NRCs function not only as h-NLRs mediating
s-NLR signaling, but also as h-NLRs mediating MAMP and
effector signaling sensed by diverse eLRR-receptors. NRC2

and NRC3 from N. benthamiana were shown to be involved
in defense responses mediated by the eLRR-RLP Cf4, which
recognizes the Avr4 effector from Cladosporium fulvum.42 We
have recently described tomato NRC4 as associated with an
eLRR-RLP required for perception of a fungal MAMP – EIX
(LeEIX2) and with an eLRR-RLK required for perception of
bacterial flagellin (FLS2), enhancing defense responses
mediated by them.43 We have further shown that NRC4 is
required for LeEIX2 and likely also FLS2-mediated defense
responses. Furthermore, NRC4’s N-terminal coiled-coil
domain is sufficient to mediate the association with LeEIX2
and can enhance EIX and flagellin- elicited defense responses
as efficiently as the full length protein.43 Earlier works have
indicated that tomato NRC1 may be involved in defense
responses sensed by the eLRR-RLPs Cf4, Cf9, Ve1 and
LeEIX2 as well.44 Keeping with the sensor-helper model, the
eLRR receptors – Cf4, Cf9, Ve1, LeEIX2 and FLS2 can be
defined as sensors, detecting effectors and MAMPs. In this
context, eLRR-RLP/K act as sensor (s-RLP/K), while NRCs
keep their role as an h-NLR (Figure 1). We propose that
taken together, these data essentially position NRCs as a
key signaling node required for the initiation of signaling
sensed in both PTI and ETI immune pathways (Figure 1).

In accordance with this concept, we have recently shown
that DNA manipulation (using CRISPR-cas9 editing) of
tomato NRC4 leads to significant enhancement of immunity.
NRC4 CRISPRed plants, encoding a 67 aa truncated variant,

Figure 1. Schematic overview of plant defense signaling mediated by the NRC helper NLR (h-NRC). Perception of MAMPs or effectors by extracellular or intracellular
immune receptors act as pathogen sensors (s-RLK, s-RLP, s-NLR) and lead to initiation of immune-signaling by a family of helper NLRs (h-NRC).
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displayed intensified defense responses when challenged with
EIX, and presented a higher resistance to B.cinerea.43 Our
work, together with previous publications,41–44 positions
NRC as a signaling funnel for multiple PTI and ETI sensor-
receptors, demonstrating that CRISPR editing of NRCs could
potentially result in agriculturally improved Solanaceae vari-
eties possessing resistance to a broad spectrum of pathogens.
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