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ABSTRACT 1 

Phylogenetic analyses of 16S rDNA sequences of sponge-associated 2 

cyanobacteria showed them to be polyphyletic, implying that they derived from 3 

multiple independent symbiotic events. Most of the symbiont sequences were 4 

affiliated to a group of Synechococcus and Prochlorococcus species. However, other 5 

symbionts were related to different groups, such as the Oscillatoriales.  6 
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Although both cyanobacteria and sponges have a very long evolutionary 1 

history (1,3), little is known about the identity and phylogeny of cyanobacterial 2 

sponge symbionts. For marine sponges symbiosis with cyanobacteria can be obligate 3 

or non-obligate according to the sponge species (2). Thus far, all attempts of culturing 4 

sponge-associated cyanobacteria have failed (unpublished data, 13). It is thus not 5 

known whether sponge-associated cyanobacteria are able to survive outside their host. 6 

The most common sponge-associated cyanobacterium was not found in water samples 7 

(13, 15). In Chondrilla australiensis this cyanobacterium is transmitted vertically 8 

(through sponge eggs) (14). Additionally, a study showing co-speciation between 9 

Dysidea species and their associated cyanobacteria (12) supports the hypothesis that 10 

sponges and associated cyanobacteria are coevolving. Few studies sequenced the 16S 11 

rRNA gene of sponge-associated cyanobacteria: Diaz (5) identified the first two 12 

cyanobacteria from marine sponges, Webb and Maas (16) found that the 13 

cyanobacteria inhabiting Mycale hentscheli were phylogenetically related to 14 

Cyanobacterium stanieri and species of Synechocystis and Prochloron, and Hentschel 15 

et al. (7) found that 7 sequences from cyanobacteria inhabiting the sponges Aplysina 16 

aerophoba and Theonella swinhoei could be divided into two clades 17 

(Synechococcus/Prochlorococcus and Pleurocapsa). The aim of the present study was 18 

to increase our understanding on the diversity of sponge-associated cyanobacteria, and 19 

to determine their phylogenetic position. 20 

Sponge samples from 16 species were collected from four locations: The 21 

Caribbean (Bahamas, 26º33’N, 77º52’W), Mediterranean (Rapallo, Italy, 44º18’N, 22 

9º12’E), Red Sea (Elat, 31º35’N, 34º54’E), and Western Indian Ocean (Zanzibar, 23 

06º09’S, 39º11’E). Aposymbiotic specimens (specimens that do not contain 24 

cyanobacterial symbionts), growing in dark caves or overhangs, were also collected 25 



 

 

4

for two sponge species (Petrosia ficiformis and Xestospongia muta). Those samples, 1 

collected at short distances from symbiotic specimens, were used as negative controls, 2 

to ensure that 16S rDNA sequences were derived from true symbionts and not from 3 

surface associated cyanobacteria or digested cyanobacteria. Photosynthetic activity 4 

inside the living sponge tissue was tested by pulse amplitude modulated fluorometry 5 

(Diving PAM, Walz, Germany). Tissue samples (1 cm3) were rinsed twice in 100% 6 

EtOH, and kept in 100% EtOH at 4 ºC. DNA was extracted following the procedure 7 

of Bernatzky and Tanksley (4). 16S rDNA was amplified with the primers 361F (5’- 8 

GAATTTTCCGCAATGGGC -3’) and 1459R (5’- GGTAAYGACTTCGGGCRT -9 

3’) (5). 1060-bp fragments were cloned in the PTZ57R/T vector (Fermentas). Twenty 10 

clones per individual were amplified using M13 universal primers. The PCR products 11 

were digested with restriction enzymes ApaI and HaeIII. One clone was sequenced for 12 

each pattern present in more than 10% of the clones. The sequences were deposited in 13 

Genbank (accession numbers AY701287-AY701315). 14 

 15 

Neither photosynthetic activity, nor amplification of the 16S rRNA gene was 16 

obtained for aposymbiotic specimens. On the opposite, photosynthetic activity was 17 

recorded for all the other samples. Up to three different cyanobacterial clones were 18 

sequenced per individual sponge investigated (with a sequence homology of 90-19 

99.7%). Similarly, Webb and Maas (16) showed four closely related (99.1-99.8%) 20 

cyanobacterial clones in the sponge Mycale hentscheli. Different cyanobacterial types 21 

from the same individual were usually phylogenetically close to each other (<1-2% 22 

sequence divergence), but in one case (Lendenfeldia dendyi) the symbionts were very 23 

divergent: two types were in group 5, while the third type was in group 2, with 10% 24 

sequence divergence from the former two (Fig. 1). Closely related cyanobacterial 25 
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types should not be the result of Taq-polymerase errors or cloning-bias since only 1 

patterns present in more than one clone were sequenced. However, the true 2 

cyanobacterial diversity in sponges might be underestimated. Nevertheless our results 3 

are in agreement with other studies (13, 16). For example, Usher et al. (13) also 4 

identified only one cyanobacterial type in the sponge Petrosia ficiformis. 5 

A maximum likelihood (ML, (6)) analysis was done based on 147 taxa and 6 

1396 nucleotides. The sequences were chosen to include: 1- representatives of the 7 

cyanobacteria diversity; 2- all sponge-associated cyanobacteria sequences overlapping 8 

with the new 16S rDNA sequences; and 3- representatives of the Synechococcus and 9 

Prochlorococcus diversity because sponge symbionts have been suggested to belong 10 

to these genera. BLAST searches were also conducted for each sponge sequence in 11 

order to include in the analysis the most similar sequences available in the databanks. 12 

The GTR model with a gamma distribution (4 categories), and a proportion of 13 

invariant site was found to be the most appropriate using Modeltest version 3.06 (9)). 14 

The ML tree was reconstructed in an iterative way using PAUP* version 4.0b10 (11). 15 

First a heuristic search was conducted using the ML parameters identified by 16 

Modeltest; Modeltest topology as starting tree and NNI branch swapping. The 17 

topology found at the end of the search was used to identify new parameters. These 18 

new parameters and topology were used to conduct a new search till convergence. 19 

The best ML parameters found were then used to compute 500 bootstrap replicates 20 

starting with a NJ tree and setting the maximum number of tree to one to reduce 21 

computation time. 22 

The phylogenetic tree obtained in this study was in agreement with the results 23 

of other studies that divided cyanobacteria into seven or eight major lineages (8, 10), 24 

except that group 2 (8) was here paraphyletic (Fig. 1). Sponge-associated 25 
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cyanobacteria were found to be polyphyletic. They were divided into thirteen lineages 1 

spread among various groups of cyanobacteria (Fig. 1 and 2). The major clade of 2 

sponge-associated cyanobacteria (37 strains from 18 different sponge species 3 

collected from a wide range of geographic regions: Australia, Caribbean, French and 4 

Italian Mediterranean coast, Red Sea, Zanzibar) was strongly affiliated with group 6 5 

(Prochlorococcus, Synechococcus and Microcystis, (8)). Three additional sponge-6 

associated cyanobacteria (from Chondrilla spp. and Haliclona sp.) were also part of 7 

group 6, but were closer to free-living Synechococcus than to the other sponge 8 

symbionts (Fig. 2). A second group of sponge-associated cyanobacteria (consisting of 9 

four sequences from Dysidea herbacea, Dysidea granulosa, Lendenfeldia dendyi and 10 

Aplysina gerardogreeni, originating from Guam, Mexican Pacific and Zanzibar) were 11 

affiliated to group 2 (morphologically classified in the order Oscillatoriales). A few 12 

other sponge-associated cyanobacteria were affiliated with group 5 (Chroococcales, 13 

Oscillatoriales, Pleurocapsales and Prochlorales, (8)), but they did not form a 14 

monophyletic group (Fig. 1). One additional cyanobacterium (AF295635) from an 15 

Australian sponge was found affiliated to the marine group 7 (8). Finally, a sequence 16 

of a cyanobacterium associated with the sponge Pseudoaxinella flava appeared 17 

unrelated to any major group of cyanobacteria (Fig. 1). The polyphyletic origin of 18 

sponge-associated cyanobacteria indicates that they derived from multiple 19 

independent symbiotic events, involving several different cyanobacterial types and/or 20 

host sponges. 21 

The phylogenetic relationships between the cyanobacterial sequences of group 22 

6 suggest only a partial specificity of cyanobacteria to the host sponges. Two 23 

specimens of Petrosia ficiformis, one collected in Italy (this study), and another in 24 

France (13), were found to be 99% identical, and closely related (BP = 100%). Three 25 
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cyanobacterial types from two Bahamian Xestospongia muta specimens were strongly 1 

affiliated to each other and with that from the congeneric species Xestospongia 2 

proxima (BP= 100%). Cyanobacteria from two congeneric Theonella species 3 

(swinhoei and conica) were affiliated to each other (BP=77%). Finally, six 4 

cyanobacteria associated with Chondrilla australiensis (13, 15) were closely affiliated 5 

(BP = 49%). These results may also support the idea of co-evolution between sponges 6 

and their symbionts. However, cyanobacteria associated to Theonella swinhoei from 7 

Japan and the Red Sea clustered in different groups (Fig. 1 and 2). In this large-scale 8 

phylogenetic analysis, sponge-associated cyanobacteria clades deriving from distant 9 

geographic location (as the clades in group 2 and 6) are most probably true-10 

symbionts, while the symbiotic nature of sponge cyanobacteria that are closely related 11 

to free living species (e.g. those in Pseudoaxinella flava) remains uncertain. 12 

In the future it will be interesting to examine whether cyanobacterial sponge 13 

symbionts from different lineages perform diverse functions in this symbiosis. In 14 

addition, reconstruction of sponge molecular phylogeny will enable to test for co-15 

evolution of cyanobacteria and their host sponges.  16 
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FIGURE LEGENDS 1 

 2 

FIG. 1: Maximum Likelihood tree of sponge-associated cyanobacteria based 3 

on 16S rRNA. Bootstrap values above 50% are indicated. Sponge-associated 4 

cyanobacteria (which were named following their host species) are indicated in bold. 5 

The group numbers follow Honda et al. (8) and Robertson et al. (10). The triangle 6 

represents group 6 detailed in Figure 2. The individual identification number is given 7 

at the end of the sequence; different letters represent different clones obtained for the 8 

same sponge individual. Sequences from this work are indicated by a star after the 9 

accession number. The sampling localities of sponge-associated cyanobacteria are 10 

indicated by bars. AU-Australia, BH-Bahamas, GU-Guam, JP-Japan, MX-Mexican 11 

Pacific, NZ-New Zealand, ZZ-Zanzibar. 12 

 13 

FIG. 2: “Group 6” detailed 16S rRNA-based Maximum Likelihood tree of 14 

sponge-associated cyanobacteria. Arrow, to outgroup (cf. Fig. 1). Bootstrap values 15 

above 50% are indicated. Sponge-associated cyanobacteria (which were named 16 

following their host species) are indicated in bold. The individual identification 17 

number is given at the end of the sequence; different letters represent different clones 18 

obtained for the same sponge individual. Sequences from this work are indicated by a 19 

star after the accession number. The sampling localities of sponge-associated 20 

cyanobacteria are indicated by bars. AU-Australia, BH-Bahamas, MS-Mediterranean 21 

Sea, RS-Red Sea, ZZ-Zanzibar. 22 
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