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1.  introduction

Plants are continuously exposed to pathogenic microorganisms in their  environment, 
and possess many mechanisms aimed at mounting an effective defense against these 
pathogens (Jones and Dangl, 2006; Yang et al., 1997). These defense responses 
include the strengthening of mechanical barriers, oxidative burst, “de novo” produc-
tion of antimicrobial compounds such as pathogenesis-related (PR) proteins and 
phytoalexins, and the induction of the hypersensitive response (HR) mechanism, 
where the tissue surrounding the infection site dies and confines pathogen growth 
(Hammond-Kosack and Jones, 1996).

The host plant recognizes foreign molecules associated with microorgan-
isms. Some recognition events conform to the model in which a host receptor 
interacts directly with a molecule of the microbe. These include the interaction 
between microbe-associated molecular patterns (MAMPs) and MAMP receptors 
(Nurnberger et al., 2004). They also include the interaction between some effec-
tors and their cognate resistance (R) proteins. Elicitors (MAMPs) that trigger 
plant defense responses have been isolated from a variety of phytopathogenic and 
nonpathogenic microorganisms (Ebel and Cosio, 1994; Felix et al., 1999; Fuchs 
et al., 1989; Ricci et al., 1993) The ability of the plant to recognize and defend 
itself  upon MAMP perception has recently been studied extensively in the context 
of endocytosis, in particular in connection with bacterial proteins (Martin et al., 
2003; Robatzek et al., 2007). Here we present an analysis relating primarily to 
fungal MAMPs

1.1.  VERTICILLIUM GLYCOPROTEINS

Fungi of the genus Verticillium are pathogens responsible for vascular wilt disease 
in over 200 plant species (Fradin and Thomma, 2006). A few elicitors present 
in Verticillium species have been previously documented, among them a 65 kDa 
heat-stable glycoprotein (Davis et al., 1998). A locus responsible for resistance 
against Verticillium, termed Ve, has been isolated from tomato and was found to 
confer resistance to strains of V. dahliae and V. alboatrum. The Ve locus  contains 
two genes: Ve1 and Ve2, which encode cell surface leucine-rich repeat (LRR) 
 receptor-like protein (LRR-RLPs; Kawchuk et al., 2001).
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1.2.  CRYPTOGEIN FROM PhyToPhThoRA

Cryptogein and Capsicein are proteinaceous elicitors isolated from the  oomycete 
Phytophthora (water mold) and are capable of eliciting defense responses in 
tobacco; Cryptogein is 50 times more potent than Capsicein (Ricci et al., 1989).

Cryptogein induces hypersensitive response (HR) and systemic acquired resist-
ance (SAR) in tobacco plants (Lebrun-Garcia et al., 1999). The tobacco response to 
cryptogein also includes production of active oxygen species, cytosol acidification, 
membrane depolarization, and MAP kinase activation (Lebrun-Garcia et al., 1999).

Cryptogein was found to bind tobacco plasma membranes in a saturable, 
specific, and reversible manner, in concentrations required for in vivo activity. The 
putative Cryptogein receptor may also be glycosylated (Wendehenne et al., 1995).

1.3.  ClADoSPoRIUm fUlVUm AVR PROTEINS

C. fulvum causes leaf mold disease on sensitive cultivars of Tomato. Tomato Cf genes 
confer resistance to C. fulvum through recognition of fungal Avr proteins. Many 
tomato Cf genes have been cloned. The encoded proteins are type I transmembrane 
glycoproteins containing extracellular leucine-rich repeats (LRRs), a membrane 
spanning region and a short cytoplasmic domain (Rivas and Thomas, 2005).

Many host responses have been described as characterizing the interaction 
between Cf and corresponding Avr proteins, including deposition of callose, pro-
duction of glucanases and chitinases, production of phytoalexins and pathogenesis-
related (PR) proteins, as well as production of active oxygen species, stimulation 
of protein kinases, and hypersensitive response (HR; Joosten et al., 2000; Joosten 
and de Wit, 1999). However, no physical interaction was detected between Cf4 or 
Cf9 and their corresponding Avr proteins, though the possibility was examined in 
many different experimental systems (Luderer et al., 2001; Rivas and Thomas, 
2005). In fact, though Avr4 and Avr9 are the presumed ligands of Cf4 and Cf9, 
respectively, the molecular mechanism underlying Avr protein perception has not 
been established.

Interestingly, and possibly due in part to the lack of direct physical interac-
tion between the Cf and Avr proteins, though the tomato Cf receptors Cf4 and 
Cf9 were reported to contain the conserved endocytosis signal Yxxf within the 
short cytoplasmic domain (Jones et al., 1994b; Thomas et al., 1997), endocytosis 
of the corresponding Avr proteins has not been reported. However, vesicular 
transport and signaling are no doubt involved in the response to C. fulvum Avr 
proteins, as evidenced by the specific phosphorylation of a syntaxin (SNARE 
complex protein) early in the Cf9/Avr9 pathway (Heese et al., 2005).

1.4.  ETHYLENE-INDUCING XYLANASE FROM TRIChoDeRmA

The fungal protein ethylene-inducing xylanase (EIX) (Dean et al., 1989), is a 
well-known protein elicitor of defense response reactions in tobacco (Nicotiana 
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tabacum) and tomato (Solanum lycopersicum) plants (Avni et al., 1994; Bailey 
et al., 1990). EIX induces ethylene biosynthesis, electrolyte leakage, expression 
of PR proteins, and HR in specific plant species and/or varieties (Bailey et al., 
1990; 1992; Elbaz et al., 2002; Ron et al., 2000). EIX was shown to specifically 
bind to the plasma membrane of both tomato and tobacco responding cultivars 
(Hanania and Avni, 1997). The response to EIX in tobacco and tomato cultivars 
is controlled by a leucine-rich-repeat receptor-like-protein (LRR-RLP) encoded 
by a single dominant locus, termed LeEix (Ron and Avni, 2004).

2.  Endocytosis in Plants

In the past years, the roles of regulated endocytosis in plant development and 
plant immunity are emerging (Robatzek, 2007). A variety of membranal recep-
tors, mostly leucine-rich repeat (LRR) receptors, have been identified and are 
involved in many processes, including cell differentiation and defense signaling. 
Ligand-dependent (Robatzek et al., 2006) and ligand-independent, constitutive 
receptor internalization have been documented (Gifford et al., 2005; Shah et al., 
2002). As is the case for cell surface receptors in mammalian cells, autophos-
phorylation of the cytosolic domain of plant LRR-RLK receptors induced by 
ligand binding has also been demonstrated (Shah et al., 2002). Plant receptors 
can also undergo recycling back to the PM after internalization (Albrecht et al., 
2008). However, despite many recent advances in the field, plant endocytic com-
partments are not well characterized and the term endosome is often employed 
generally for compartments containing endocytosed material. A broad range of 
molecular markers have been developed and, together with lipid marker dyes are 
used to analyze plasma membrane vesicular recycling and endocytosis, as well as 
to identify and characterize the corresponding endomembrane compartments in 
plant cells (Gross et al., 2005; Lam et al., 2007b; Muller et al., 2007; Samaj et al., 
2004, 2005).

Styrl dyes such as FM-4-64 have been used to study localization of vesicles, 
which are putative endosomes (Bolte et al., 2004; Grebe et al., 2003; Lam et al., 
2007a; Ueda et al., 2001). Structural studies indicated that the partially coated 
reticulum (PCR) is analogous to the early/recycling endosomes of mammalians 
(Galway et al., 1993). Two distinct classes of early endosomes were identified in 
Arabidopsis. One comprises the endosomes in which Ara6 resides, and the other 
the endosomes to which Ara6 is not targeted (Ueda et al., 2001). Early endosomes 
have also recently been characterized as SCAMP1 containing tubular-vesicular 
structures possessing clathrin coats and residing in the vicinity of the trans-golgi 
(Lam et al., 2007b). Molecule sorting occurs in the early endosomes, from which 
they are either recycled back to the plasma membrane, transported to the golgi 
apparatus, or to multivesicular bodies (MVBs, also known as late endosomes; 
Battey et al., 1999; Jurgens, 2004). The trans-golgi network (TGN) was also found 
to be involved in early endocytic pathways in Arabidopsis (Dettmer et al., 2006; 
Lam et al., 2007b). Prevacuolar compartments (PVCs) have been identified as 
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MVBs in tobacco BY2 cells (Tse et al., 2004). From the MVBs, the endocytosed 
material is targeted to the vacuole for degradation. Recent studies conducted in 
plant systems have further elucidated possible functionalities of plant endocytic 
compartments and the flow of endocytosed material throughout plant cells 
(Geldner and Robatzek, 2008; Lam et al., 2007a; Muller et al., 2007; Silady et al., 
2008; Teh and Moore, 2007).

Clathrin-coated vesicles are most probably a major means of internalization in 
plant cells. Studies conducted recently have demonstrated that clathrin-dependent 
internalization occurs in plants (Dhonukshe et al., 2007; Lam et al., 2007b; 
Leborgne-Castel et al., 2008; Perez-Gomez and Moore, 2007; Tahara et al., 2007). 
Components that interact with the clathrin-coated vesicles and adaptor proteins 
such as dynamins and proteins that contain an SH3 domain occur in plants and are 
involved in endocytosis and vesicle trafficking (Kang et al., 2003; Lam et al., 2001).

3.  ligand-induced Endocytosis of Fungal Elicitors

Fungal elicitors have been shown to enter plant cells in several instances. In some 
cases, a specific plant receptor, which recognizes the fungal elicitor, has been identi-
fied and isolated. Thus far, many of the plant receptors identified, which recognize 
fungal elicitors have been shown to be leucine-rich-repeat receptor-like proteins 
(LRR-RLPs), which contain an extracellular LRR and lack a kinase domain. 
LRR motifs are often found in proteins involved in specific protein–protein inter-
actions. In the case of some R proteins, the LRR domains are believed to deter-
mine the specificity of Avr ligand binding (Hammond-Kosack and Jones, 1997; 
Thomas et al., 1997). Additionally, some of these receptors contain a Yxxf motif  
for clathrin-mediated endocytosis.

One of the first systems, which demonstrated that endocytosis does indeed 
occur in turgid plant cells employed the Verticillium elicitor. Although this work 
dates to 1989 it is still current today, and it was the first to indicate the possibility 
of receptor-mediated endocytosis in plant cells. This work indicated that there 
probably exists a specific receptor for the Verticilium elicitor (Horn et al., 1989). 
Subsequently, two Ve receptors were isolated, and found to be LRR-RLPs con-
taining the Yxxf endocytosis motif  (Kawchuk et al., 2001) as detailed above.

The Verticillium elicitor was shown to enter the cell by an endocytic process 
in soybean cell cultures (Horn et al., 1989). The rate of elicitor uptake as well as 
its sensitivity to temperature conform with an endocytic process. A preparation 
of the Verticillium elicitor, which is a glycoprotein as described above, was found 
to associate with the cell surface and subsequently induce the formation of H2O2 
within 5 min. Internalization of the labeled elicitor was competitively inhibited by 
unlabeled elicitor and, 5–7 h after application, a large portion of the elicitor was 
delivered to the cell vacuole, probably for degradation (Horn et al., 1989).

The Cryptogein elicitor was recently shown to induce endocytosis in correla-
tion with its defense response activation (Leborgne-Castel et al., 2008). Endocytosis 
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of the lipophylic dye FM-4-64, which is commonly accepted as a marker for 
clathrin-mediated endocytosis in plant, was found to be stimulated in response to 
the addition of Cryptogein to a tobacco cell suspension. However, endocytosis of 
FM-4-64 was not induced in response to a control ligand, which does not trigger 
defense response signaling. Additionally, cryptogein was found to induce a transi-
tory stimulation of clathrin-coated pits within 15 min of its addition. Both these 
phenomena were blocked in the presence of tyrphostin A23, which can inhibit 
receptor-mediated endocytosis. The study presented in Leborgne-Castel et al. 
(2008) is one of the first to link clathrin-coated pits and vesicles with the endocy-
tosis of a plant defense response elicitor and, given the evidence presented, most 
probably occurs via a specific receptor, which may contain a clathrin-mediated 
endocytosis motif.

Hanania et al. (1999) showed that after binding the plant membrane EIX is 
transported into the cytoplasm. Mutation in the endocytosis motif  of LeEix2 
resulted in abolishment of induction in HR in response to EIX, suggesting that 
endocytosis plays a key role in mediating the signal generated by EIX that leads 
to HR induction (Ron and Avni, 2004).

In a recent work (M. Bar and A. Avni, unpublished results), we have shown 
that EIX triggers internalization of the LeEix2 receptor on endosomes, which are 
dependent on an intact cytoskeleton. Ten to 15 min after EIX application the 
GFP-tagged LeEix2 receptor can be seen throughout the cell on vesicles. These 
vesicles were also FYVE positive indicating that they are endosomes. In untreated 
leaves, GFP-tagged LeEix2 did not appear colocalized with the FYVE marker 
(data not shown). The FYVE domain has been reported to localize to endosomes 
in mammalian cells (Stenmark et al., 1996) as well as plant cells (Heras and 
Drobak, 2002; Jensen et al., 2001; Voigt et al., 2005). The FYVE-positive LeEix2 
vesicles were also highly motile, as is characteristic of endosomes. In untreated 
leaves the FYVE vesicles have similar motility, while the GFP-LeEix2 is localized 
to the plasma membrane.

4.  defense receptors and the involvement of the Endocytic Mechanism  
in Plant defense response signaling

Leucine-rich-repeat receptor kinase (LRR-RLKs) and LRR-RLPs have been 
implicated in signaling as well as defense responses in plants (Becraft, 2002; Torii, 
2004). The most intensively studied LRR-RLK in the context of plant defense 
responses is FLS2, which recognizes bacterial flagellin and the flagellin-derived 
peptide flg22 (Felix et al., 1999; Gomez-Gomez and Boller, 2000; Gomez-Gomez 
et al., 1999). FLS2 is responsible for flagellin recognition, leading to a response, 
which includes generation of ROS, MAP kinase activation, ethylene production, 
and induction of gene transcription (Asai et al., 2002; Felix et al., 1999; Zipfel 
et al., 2004). The perception of flagellin by FLS2 was shown to be essential for the 
plant defense response, as FLS2 mutations compromised the ability of the plant 

[AU2]

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198



MAYA BAR AND ADI AVNI

to mount an efficient defense against bacterial pathogens (Robatzek et al., 2006; 
Zipfel et al., 2004). Interestingly, the kinase activity of RLKs such as FLS2 may 
be required for receptor internalization and is probably required for receptor sig-
naling (Robatzek et al., 2006).

As detailed above, LRR-RLPs have been implicated in response to patho-
gens. The tomato Cf genes, which mediate resistance to C. fulvum encode LRR-
RLPs, the LRR domain of which was shown to be important for avirulence (Avr) 
gene recognition (Takken et al., 1999; van der Hoorn et al., 2005). Genetic compat-
ibility of a Cf protein and its Avr counterpart typically leads to defense responses 
including oxidative bust, ion fluxes, MAP kinase activation, and induction of HR 
(May et al., 1996; Piedras et al., 1998; Romeis et al., 1999) that inhibits C. fulvum 
proliferation. Additional LRR-RLPs include the tomato Ve-resistant proteins 
(Kawchuk et al., 2001) and the leeix proteins, as mentioned above (Ron and Avni, 
2004). The tomato Ve2-, Cf9-, Cf4-, and LeEix-resistant proteins detailed herein 
(Jones et al., 1994; Kawchuk et al., 2001; Ron and Avni, 2004; Takken et al., 1998) 
contain the conserved endocytosis signal Yxxf within the short cytoplasmic 
domain. Mutating this signal in LeEix2 abolishes both endocytosis (M. Bar and 
A. Avni, unpublished) and receptor signaling (Ron and Avni, 2004).

4.1.  THE ENDOCYTIC MECHANISM INVOLVED IN PLANT  
DEFENSE RESPONSES TRIGGERED BY FUNGAL  
ELICITORS: EIX AS A MODEL

A schematic proposed model incorporating our works relating to the LeEix recep-
tor (Bar et al., 2008; Hanania et al., 1999; Ron and Avni, 2004; Rotblat et al., 
2002) is presented in Fig. 1. Upon EIX application, EIX binds the LeEix2 recep-
tor on the outside of the plasma membrane (Hanania and Avni, 1997; Ron and 
Avni, 2004). This binding was shown not to require additional plant proteins (Ron 
and Avni, 2004). The ligand–receptor complex probably signals for the binding of 
an endocytic protein complex to the Yxxf motif  present within the cytoplasmic 
tail of LeEix2. One protein in such a complex could be AP-2, which has been 
shown to bind the Yxxf motif  of transferrin receptor and participates in transfer-
rin internalization in Arabidopsis protoplasts (Ortiz-Zapater et al., 2006). Binding 
of AP-2, usually via the Yxxf motif, has also been shown to be a crucial step in 
the internalization of several mammalian receptors (Traub, 2003).

Interestingly, EHD proteins in mammalians were shown to bind adaptor 
proteins, as well as additional proteins of the clathrin-coated vesicle complex 
(Rotem-Yehudar et al., 2001). This may also be the case in plant cells. It is pos-
sible that AP-2 resides in a complex with the cytoplasmic tail of LeEix2 and 
EHD2, as well as additional proteins.

Binding of EIX allows for entry of LeEix2 into the cell, in an actin- and 
microtubule-dependent manner. EHD2 has been shown to be linked to the actin 
cytoskeleton in mammalian cells (Braun et al., 2004; Guilherme et al., 2004), and 
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Figure 1. Schematic representation of  LeEix localization and putative signaling pathway. Local-
ization of  known markers indicated. E1 = AtEHD1, E2 = AtEHD2, CCP = clathrin-coated pit; 
CCV = clathrin-coated vesicle.

we have preliminary evidence that this is the case in plants as well (M. Bar et al., 
unpublished).

LeEix2 is internalized on FYVE-positive endosomes, which may also 
 contain EHD1 (Bar et al., 2008); LeEix2 may be recycled back to the plasma 
membrane on recycling vesicles (which can also contain EHD1 [Rapaport et al., 
2006]), as internalization experiments of LeEix2 in the presence of cycloheximide 
were not significantly different than those conducted without cycloheximide, 
though LeEix2 did remain on FYVE endosomes for longer periods of time in the 
presence of cycloheximide. LeEix2 is probably recycled to the plasma membrane 
via vesicles, a process, which does not obligatorily require protein synthesis but 
may be amplified by the synthesis of certain proteins involved. LeEix2 may also 
be degraded via the multivesicular bodies/vacuole pathway, at least in part.
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The internalization of LeEix2 is required for induction of defense responses, 
including ion flux, ROS production, ethylene, and PR protein synthesis (Bailey 
et al., 1990, 1992; Laxalt et al., 2007). EIX application also triggers NtEHD2 
expression, upon which NtEHD2 acts to inhibit the defense response in the short 
term. Longer exposure to MAMPs leads to a “full-blown” defense response 
including HR, free of the inhibitory influence of EHD2, suggesting that a control 
mechanism based on the interplay of different proteins may be at work.

5.  conclusions

Plants are continuously exposed to pathogenic microorganisms in their environ-
ment, and possess many mechanisms aimed at mounting an effective defense 
against these pathogens. In many cases, the host plant recognizes foreign molecules 
associated with the microorganism, termed microbe-associated molecular patterns 
(MAMPs). Elicitors (MAMPs) that trigger plant defense responses have been iso-
lated from a variety of phytopathogenic and nonpathogenic microorganisms (Ebel 
and Cosio, 1994; Felix et al., 1999; Fuchs et al., 1989; Ricci et al., 1993).

Leucine-rich-repeat receptor-like-proteins (LRR-RLP) have been reported 
to be involved in plants’ ability to sense and respond to several microbial patho-
gens. The transmembranal receptor-like proteins studied include receptor-like 
kinases (RLKs) such as FLS2 and EFR and receptor-like proteins (RLPs, lacking 
a kinase domain) such as the LeEix proteins and the Cf proteins. In the cases of 
plant defense against fungal pathogens, the plant resistance receptors identified 
thus far are predominantly receptor-like proteins.

LeEix2 mediates the recognition and response to ethylene-inducing xylanase 
(EIX) elicitor. LeEix2 contains the endocytosis motif  Yxxf. Mutating the Yxxf 
motif  in LeEix2 abolishes EIX-mediated hypersensitive response, suggesting that 
endocytosis plays a key role in the signal transduction pathway. Endocytosis has 
also been demonstrated to be involved in the signaling of additional “anti-fungal” 
RLPs such as Ve1. We have previously shown that EIX triggers internalization of 
the LeEix receptor and that plant EHD2 is an important factor in the internaliza-
tion and downstream signaling of EIX/LeEix and RLPs of the Cf family.
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